

THE KEY

CHIOMETRY The subject of *Thermodynamics* deals basically with the interaction of one body with another in terms of quantities of heat & work. It may be *defined* as the branch of science which deals with energy changes associated with various physical & chemical processes. The entire formulation of thermodynamics is based on a few (Three) fundamental laws which have been established on the basis of human experience Page 2 of 29 ST of the experimental behaviour of macroscopic aggregates of matter collected over a long period of time. *Thermochemistry* is the branch of physical chemistry which deals with the thermal or heat changes caused by chemical reactions. It is based on first law of thermodynamics. There are two laws of thermochemistry:

Lavoisier & Laplace law (a) (b) Hess's law.

TERMS & CONVENTIONS

A number of terms & conventions are used in thermodynamics.

A System is defined as that part of the universe which is at the moment under investigation.

Universe less the system is defined as *Surroundings*. The actual or imaginary surface that separates the

system from the surroundings is called the *Boundary*. **TYPES OF SYSTEMS:** A system is said to be *Isolated* if it cannot exchange matter and energy with the surroundings (coffee in a thermos flask).

A system is said to be *Closed* if it can exchange energy but not matter. Coffee in a closed stainless steel flask is an example. A system is said to be **Open** if it can exchange matter and energy both. A thermo flask or a steel flask if not closed is an example. A system is said to be homogeneous when it is completely uniform throughout, made up of one phase only, pure liquid. solid, gas.

A system is said to be heterogeneous if it consists of two or more phases, liquid in contact with vapour.

STATE OF A SYSTEM :

The state of a system is defined by a particular set of its measurable properties. For example, we can describe the state of a gas by quoting its pressure (P), volume (V) and temperature (T) etc.

Variables like P, V, T are *State Functions* OR *State Variables* because their values depend only on the state of a system and not on how the state was reached.

State variables can be intensive or extensive. An intensive variable (eg. temperature, pressure, concentration) is one whose value is independent of the size of the system. An extensive variable (eg. volume, mass, surface area is one whose value is proportional to the size of the system.

Extensive Properties (Depend upon quantity of	Intensive Properties (Do not depend upon quantity of		
Matter present and are additive)	Matter present and are non additive)		
Volume	Molar volume		
Number of moles	Density		
Mass	Refractive index		
Free Energy G	Surface tension		
Entropy S	Viscosity		
Enthalpy H	Free energy per mole		
Internal energy E	Specific heat		
Heat capacity	Pressure		
	Temperature		
	Boiling point, freezing point etc		

THERMODYNAMIC PROCESS:

A thermodynamic process involves change of a system from one state to another state.

TYPES:

STOICHIOMETRY A process is called *Isothermal*, if the temperature of the system remains constant during the change. It is carried out in a thermostat and in such a process the exchange of energy between the system and

A process carried out at a constant pressure in the function of the system may change. In A

A process in which the volume of the system remains constant is called an **isochoric** process, whereby dV = 0.

CYCLIC PROCESS:

When a system undergoes a number of different processes and finally returns to its initial state. $\Delta E = 0 \& \Delta H = 0.$

REVERSIBLE PROCESS : (QUASI-STATIC)

8930 58881, BHOPAL A process which is carried out so slowly that the system and the surroundings are always in equilibrium is known as a *Reversible Process*. If this condition does not hold good, the process is said to be, Irreversible.

In a reversible process the driving force is infinitesimally larger than the opposing force. If the driving force is made infinitely smaller than opposing force, the system can be brought back without producing any permanent change. or : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32

A process which proceeds of its own i.e. without any external help, is called as Spontaneous Process (or a natural process).

Internal Energy (Intrinsic Energy) E - Every system having some quantity of matter is associated with a definite amount of energy, called internal energy.

 $E = E_{Translational} + E_{Rotational} + E_{vibrational} + E_{Bonding} + E_{Electronic} + \dots$

It is a state function & is an extensive property.

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$ $\Delta E = q_{v}$

ZEROTH LAW OF THERMODYNAMICS

It states that, two systems in thermal equilibrium with a third system, are also in thermal equilibrium with each other.

FIRST LAW OF THERMODYNAMICS

It is law of conservation of energy. Mathematically, this law is written as :

 $\Delta E = q + w$, where ΔE is change in internal energy of the system and is a state function, q is the transfer of heat from / to the system and w is the work involved (either done on the system or by the system). According to IUPAC, heat, added to the system and work done on the system are assigned positive values as both these Modes increase the internal energy of the system.

TYPES OF WORK:

CLASSES, Two TYPES of work normally come across in chemistry. These are *Electrical Work* in system involving ions, while the Mechanical Work is involved when a system changes its volume in the, presence of an externally applied pressure (i.e. pressure volume work). It is especially important in system containing gases.

Ϋ́

If a system expands from a volume V_1 to V_2 at constant pressure P, then the first law equation becomes, $\Delta E = q - P \Delta V \qquad (\Delta V = V_2 - V_1) \qquad \dots (1)$ For a process carried at constant volume A B = q (heat absorbed at constant volume) Work = Intensity factor X capacity factor w - by the system (Expansion) negative w - on the system (compression) positive q \rightarrow absorbed by the system positive $q \rightarrow$ given out by the system negative Work done in irreversible process (Expansion)

$$w = -P_{Ext} \Delta V$$

Work done in isothermal reversible process

(maximum work) (Expansion)

w = -2.303 nRT log $\frac{V_2}{V_2}$ = -2.303 nRT log $\frac{P_1}{P_2}$

 $w = \frac{nR}{\gamma - 1} \left[T_2 - T_1 \right]$

work done is adiabatic reversible process

$$\gamma = \frac{C_P}{C_V} = Poisson's ratio$$

ENTHALPY:

or

Chemical reactions are generally carried out at constant pressure (atmospheric pressure) so it has been found useful to define a new state function *Enthalpy* (H) as :

H = E + PV (By definition) $\Delta H = \Delta E + P \Delta V + V \Delta P$ or $\Delta H = \Delta E + P \Delta V$ (at constant pressure) combining with first law. Equation (1) becomes $\Delta H = q_p$

Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL Hence transfer of heat at constant volume brings about a change in the internal energy of the system whereas that at constant pressure brings about a change in the enthalpy of the system.

The difference between $\Delta H \& \Delta E$ becomes significant only when gases are involved (insignificant in TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. solids and liquids) and is given by: $\Delta H = \Delta E + (\Delta n) RT$, where Δn is the INCREASE in the number of moles of the gases involved (i.e. Total number of moles of product gases less the total number of moles of reactant gases).

FACTORS AFFECTING AH OF THE REACTIONS ARE :

(i) Temperature		(ii) Physical states of reactants & products
(iii) Allotropic forms of elements	&	(iv) Pressure & volume (in case of gases)

Two Types of Reactions may be distinguished :

Exothermic Reactions : For these ΔH is negative, which implies that

 \sum H (products) < \sum H (reactants)

(ii) **Endothermic Reactions :** For these ΔH is positive, which implies that

 \sum H (products) > \sum H (reactants)

HESS'S LAW OF CONSTANT HEAT SUMMATION :

ETRY According to Hess's law (a consequence of first law), if a set of reactants is converted into a set of product by more than one sequence of reactions, the total enthalpy change will be the same for every sequence.

Page 5 of 29 STOICHIOM As such, the chemical equations can be treated ordinary algebraic expressions and can be added or subtracted to yield the required equation. The corresponding enthalpy changes are also manipulated in the same way to obtain the enthalpy change for the desired equation.

APPLICATIONS OF HESS'S LAW:

It helps us in Calculation of :

- Heat of formation (ΔH_f) of many substances which cannot be synthesised directly from their elements.
- (ii) Bond energies.

(i)

- Enthalpy changes of slow reactions and (iii)
- (iv) Enthalpy of transformation, say from one allotropic form to the other.

CONVENTIONAL VALUES OF MOLAR ENTHALPIES :

It is not possible to determine the absolute value of enthalpy of a substance and further it also depends on the conditions under which its determination is carried out. It is therefore necessary to choose some standard conditions for reporting the enthalpy data.

Conventionally, the enthalpy of every element in its most stable state of aggregation at 1 atm. (101.325 k Pa) and 298 K is assigned a zero value.

Based on the above convention, the relative values of "Standard molar enthalpies" (ΔH°) of other

substances are obtained and it is obvious that in terms of ΔH_{f}^{o} values, the enthalpy change of any reaction is given as :

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ (products)} - \sum \Delta H_{f}^{\circ} \text{ (reactants)}$$

sum of standard enthalpies of formation of product (sum of standard enthalpies of formation of reactants

Reactions are frequently classified according to type of thermochemical purpose and the enthalpies of reactions are given different names.

A balanced chemical equation which expresses the heat changes taking place in a reaction as well as the physical states of various reactants and products is known as a thermochemical equation.

Heat capacity
$$C = \frac{dq}{dT}$$
; $C_V = \left(\frac{\partial E}{\partial T}\right)_V$; $Cp = \left(\frac{\partial H}{\partial T}\right)_P$

 $q = C (T_2 - T_1)$ for 1 mole; $q = nC (T_2 - T_1)$ for n moles

Kirchoffs Equation:
$$\frac{\Delta H_2 - \Delta H_1}{T_2 - T_1} = \Delta C_P$$
; $\frac{\Delta E_2 - \Delta E_1}{T_2 - T_1} = \Delta C_V$

Trouton's Rule : Entropy of vaporization of non-associated or non-dissociated liquid is constant & may be taken as about $87.3 \text{ J k}^{-1}\text{mol}^{-1}$.

Thermochemical Equations : An equation which indicates the amount of heat change in the reaction. These can be added, subtracted or multiplied whenever required.
The various named Enthalpies are defined as the Enthalpy change when
Enthalpy of reaction : "quantities of substances indicated in the balanced equation react completely to form the product."
Enthalpy of formation : "one mole of the substance is formed directly from its constituent elements." "Enthalpy of combustion : "one mole of the substance undergoes complete combustion" (it is always negative)

negative)

Calorific Value : "it is the amount of heat given out by complete combustion of unit weight of a solid or liquid or unit volume of a gas".

Enthalpy of solution : "one mole of the substance is completely dissolved in a large excess of the given solvent under given conditions of temperature and pressure".

Enthalpy of neutralisation : "one gram equivalent of an acid is neutralised by one gram equivalent of a base in fairly dilute solution".

Enthalpy of hydration : "one mole of an anhydrous (or a partly hydrated salt) combines with the required number of mole of water to form a specific hydrate".

Enthalpy of sublimation : "one mole of a solid is directly converted into its vapour at a given temperature below its melting point".

Enthalpy of fusion : "one mole of the solid substance is completely converted into the liquid state at its melting point".

Enthalpy of vaporisation: "one mole of a substance is converted from the liquid state to its vapour state at its boiling point".

Resonance Energy = Observed heat of formation - Calculated heat of formation

BOND ENTHALPIES' (BOND ENERGIES) :

The bond enthalpy of a diatomic molecule $(H_2, C1_2, O_2)$ is equal to its dissociation energy and is defined as "the enthalpy change involved in breaking the bond between atoms of a gaseous molecule" (Bond breaking is an endothermic process). Average bond enthalpy (energy) is the average value of bond energy obtained from molecules that contain more than one bond of that type.

 $\frac{\Delta H_{f} \text{ of molecules}}{\text{no. of bonds}}$ Av. BE =

BE is an additive property.

SECOND LAW OF THERMODYNAMICS

The essence of first law is that all physical and chemical processes take place in such a manner that the total energy of the universe remain constant.

However, it is observed that all processes have a natural direction, i.e. a direction in which they take place spontaneously. First law fails to answer this. Another feature of the spontaneous processes is that they proceed only until an equilibrium is achieved.

The direction of a spontaneous process and that it eventually reaches equilibrium, can be understood on the basis of entropy concept introduced through the second law of thermodynamics.

ENTROPY AND SPONTANEITY:

Page 7 of 29 STOICHIOMETRY Entropy (denoted by S) in s state function. When the state of a system changes, entropy also changes. The change of entrops ΔS is defined by, $\Delta S = \frac{q_{rev}}{T}$, where q_{rev} means that the heat is being supplied "Isothermally" and "Reversibly" (JK⁻¹). One can think entropy as a measure of the degree of randomness or disorder in a system. The greater the disorder, in a system, the higher is the entropy. A useful form of 2nd law of thermodynamics is : "The entropy of the universe increases in the course of every spontaneous (natural) change". OR "For a spontaneous process in an isolated system, the change in entropy is positive". When a system is in equilibrium the entropy is maximum. So mathematically TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881,BHOPAL $\Delta S = 0$ (at equilibrium) **SECOND LAW:** Statements : No cyclic engine is possible which take heat from one single source and in a $(P_1, V_1)A$ cycle completely convert it into work without producing any change in surrounding. Efficiency of Carnot engine working reversibly is maximum. P_4, V_4 Carnot cycle AB-Iso. Rev.Exp. $W_{AB} = -nRT_2 \ln n$ $W_{BC} = C_V (T_1 - T)$ BC – Ada. Rev. Exp. $w_{CD} = -nRT_1 \ln \theta$ CD-Iso. Rev. Comp. $w_{DA} = C_V (T_2 - T_1)$ DA-Iso. Rev. Comp $\underline{q_1 + q_2}$ Carnot efficiency $\eta =$ \mathbf{q}_2 **CARNOT CYCLE:** $\frac{q_1}{T_1} + \frac{q_2}{T_2} = 0$ for rev. cycle Irreversible engine $\frac{q_1}{T_1} + \frac{q_2}{T_2} < 0$ $\oint \frac{q_{rev}}{T} = 0 \Longrightarrow \frac{q_{rev}}{T}$ is a state function. $\Delta S = \int \frac{dq_{rev}}{T}$ $\begin{array}{ll} \text{Also} & \Delta S_{\text{syt}} + \Delta S_{\text{surr}} = 0 \\ & \Delta S_{\text{syt}} + \Delta S_{\text{surr}} > 0 \\ \Rightarrow & \Delta S_{\text{syt}} + \Delta S_{\text{surr}} \ge 0 \end{array}$ for rev. process for irrev. process (In general)

FREE Download Study Package from website: www.tekoclasses.com (i) (ii)

ENTROPY CHANGE (General Expression):

$$\Delta S = nC_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

Change in state function for various processes.
Reversible irreversible isothermal expansion and contraction : (ideal gas)
$$\Delta E = 0; \Delta H = 0; \Delta S = nR \ln \frac{V_2}{V_1}$$

Isobaric heating or cooling :
$$\Delta E = C_V \Delta T$$
$$\Delta H = C_P \Delta T = q_P$$
$$\Delta S = nC_P \ln \left(\frac{T_2}{T_1}\right)$$

Isochoric heating or cooling :

$$\Delta E = C_V \Delta T = q_V$$

$$\Delta H = C_P \Delta T$$

$$\Delta S = nC_V ln \left(\frac{T_2}{T_1}\right)$$

Adiabatic process :

 $\Delta E = C_V \Delta T$ $\Delta H = C_P \Delta T$

$$\Delta S = nC_V ln \frac{T_2}{T_1} + nR ln \frac{V_2}{V_1}$$
 for irreversible process

 $\Delta S = 0$ for reversible adiabatic compression and expansion.

Gibb's function :

FREE Download Study Package from website: www.tekoclasses.com

G = H - TSat constant T and pressure $\Delta G = \Delta H - T\Delta S$

 $\Delta G = (\Delta H - T\Delta S) \le 0$ for rev. process. $(-\Delta G)_{T,P}$ = work done by system max. non P – V $\frac{\Delta G}{T} = - (\Delta S_{syst} + \Delta S_{surr.})$ $\Delta G < 0$ for spontaneous process $\Delta G = 0$ for equilibrium.

GIBBS FREE ENERGY (G) AND SPONTANEITY: A new thermodynamic (state) function G, the Gibbs free energy is defined as : G = H - TS or $\Delta G = \Delta H - T \Delta S$ (at constant temperature and pressure) For a spontaneous reaction ΔG must be negative. The use of Gibbs free energy has the advantage that it refers to the system only (and not surroundings also as in entropy). To summaries, the spontaneity of a chemical reaction is decided by two factors taken together: (i) the enthalpy factor and (ii) the entropy factor. The equation $\Delta G = \Delta H - T \Delta S$ takes both the factors into consideration. The most favorable situation for a negative value of ΔG is a negative value of ΔH and a positive value of ΔS . However a large negative value of ΔH may outweigh an unfavorable ΔS value and a large value of ΔS may outweigh m = fof ΔS may outweigh an unfavorable value of ΔH .

STANDARD FREE ENERGY CHANGE (ΔG°):

The standard free energy change ΔG° is defined as the free energy change for a process at a specified temperature in which the reactants in their standard state are converted to the products in their standard state. It is denoted by ΔG° . 0 98930 58881

Like the standard enthalpy of formation of an element "the standard free energy of formation of an element in its standard state is zero". And so ;

 $\Delta G_r^o = \sum \Delta G_f^o$ (products) – $\sum \Delta G_f^o$ (reactants)

The standard free energy change. ΔG° is related to the equilibrium constant k_{eq} by the relation;

 $\Delta G^{\circ} = -2.303 \text{ RT} \log k_{eq}.$

R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, It can be shown that free energy change for a process is equal to the maximum possible work that can be derived from the process i.e.

 $\Delta G^{\circ} = W_{max}$ (for a reversible change at constant pressure and temperature)

In case of a galvanic cell, free energy change, ΔG is related to the electrical work done in the cell.

 $\Delta G = -nFE_{cell}$, where $E_{cell} = e.m.f.$ of the cell; F = Faraday constant and

n = number of electrons being transferred in the chemical process

 $\Delta G = -nF E_{cell}^{o}$, where E_{cell}^{o} is the standard cell potential. So

Clausius Claperyon's Equation : $\log \frac{p_2}{p_1} = \frac{\Delta H}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$ (For liquid \Leftrightarrow gas equilibrium)

 $p_1 \& p_2$ are vapour pressure at $T_1 \& T_2$

THIRD LAW OF THERMODYNAMICS

"At absolute zero, the entropy of a perfectly crystalline substance is taken as zero", which means that at absolute zero every crystalline solid is in a state of perfect order and its entropy should be zero. By virtue of the third law, the absolute value of entropy (unlike absolute value of enthalpy) for any pure substance can be calculated at room temperature.

The standard absolute entropy of, a substance" So, is the entropy of the substance in its standard at 298K and 1 atm.

Absolute entropies of various substances have been tabulated and these value are used to calculate entropy changes for the reactions by the formula;

TEKO CLASSES, Director : SUHAG

 $\Delta S^{\circ} = \sum S^{\circ}$ (products) – $\sum S^{\circ}$ (reactants)

ERCISE-I

First law : Heat (q), work (w) and ΔU , ΔH

In which of the following changes at constant pressure is work done by system on surrounding? By the Q.1 surrounding on system?

	Initial state	Final state
(i)	$H_2O(g) \longrightarrow$	$H_2O(l)$
(ii)	$\tilde{H_{2}O}(s) \longrightarrow$	$\tilde{H_{2}O}(g)$
(iii)	$\tilde{\mathrm{H_2O}}(l) \longrightarrow$	$\tilde{H_{2}O}(s)$
(iv)	$2\tilde{H}_2(g) + N_2(g) \longrightarrow$	$2\tilde{N}H_3(g)$
(v)	$\tilde{CaCO}_{3}(s) \longrightarrow$	$CaO(s) + CO_{2}(g)$

- The gas is cooled and loses 65 J of heat. The gas contracts as it cools and work done on the system equal to 20 J is exchanged with the surroundings. What are q, w and ΔE ? The enthalpy change for the reaction of 50 ml of ethylene with 50.0 ml of H₂ at 1.5 atm pressure is Q.2
- Q.3 $\Delta H = -0.31$ KJ. What is the ΔE .
- The enthalpy of combustion of glucose is 2808 KJmol⁻¹ at 25°C. How many grams of glucose do you Q.4 need to consume [Assume wt = 62.5 Kg].
- (a) to climb a flight of stairs rising through 3M.
- to climb a mountain of altitude 3000 M? (b)
- Assume that 25% of enthalpy can be converted to useful work.
- FREE Download Study Package from website: www.tekoclasses.com (S. R. K. Sir) PH: (0755)- 32 00 000, What is ΔE when 2.0 mole of liquid water vaporises at 100°C? The heat of vaporisation, ΔH vap. Q.5 water at 100°C is 40.66 KJmol⁻¹
 - Q.6 If 1.0 k cal of heat is added to 1.2 L of O₂ in a cylinder of constant pressure of 1 atm, the volume increases to 1.5 L. Calculate ΔE and ΔH of the process.
 - Q.7 When the following reaction was carried out in a bomb calorimeter, ΔE is found to be – 742.7 kJ/mol of NH₂CN (s) at 298 K

$$NH_2CN(s) + \frac{3}{2}O_2(g) \rightarrow N_2(g) + CO_2(g) + H_2O(l)$$

Calculate ΔH_{298} for the reaction.

- Q.8 When 1 mole of ice melt at 0°C and at constant pressure of 1 atm. 1440 calories of heat are absorbed by the system. The molar volumes of ice and water are 0.0196 and 0.0180 litre respectively. Calculate ΔH and ΔE for the reaction.
- Q.9 Water expands when it freezes. Determine amount of work in joules, done when a system consisting of SUHAG 1.0 L of liquid water freezes under a constant pressure of 1.0 atm and forms 1.1 L of ice.
- Lime is made commercially by decomposition of limestone CaCO₃. What is the change in internal Q.10 energy when 1.00 mole of solid CaCO₃ (V = 34.2 ml) absorbs 177.9 kJ of heat and decomposes at 25° C against a pressure of 1.0 atm to give solid CaO. (Volume = 16.9 ml) and CO₂ (g) (V = 24.4 L).
- One mole of solid Zn is placed in excess of dilute H₂SO₄ at 27 °C in a cylinder fitted with a piston. Find Q.11 the value of ΔE , q and w for the process if the area of piston is 500 cm² and it moves out by 50 cm CLASSI against a pressure of 1 atm during the reaction. The heat given to surrounding is 36.5 KJ. $Zn(s) + 2H^{+}(aq) \perp Zn^{2+}(aq) + H_{2}(g)$
- Two mole of ideal diatomic gas ($C_{V,m} = 5/2$ R) at 300 K and 5 atm expanded irreversly & adiabatically Q.12 to a final pressure of 2 atm against a constant pressure of 1 atm. Calculate q, w, $\Delta H \& \Delta V$.

0 98930 58881

Five moles of an ideal gas at 300 K, expanded isothermally from an initial pressure of 4 atm to a final pressure of 1 atm against a cont. ext. pressure of 1 atm. Calculate q, w, $\Delta U & \Delta H$. Calculate the corresponding value of all if the above process is carried out reversibly. Calculate the max. work done by system in an irreversible (single step) adiabatic expansion of 1 mole of a polyatomic gas from 300K and pressure 10 atm to 1 atm.($\gamma = 1.33$). 1 mole of CO₂ gas at 300 K is expanded under reversible adiabatic condition such that its volume becomes 27 times. What is the final temperature. (b) What is work done. Q.13 Q.14 Q.15 What is work done. (a) What is the final temperature. (b) Given $\gamma = 1.33$ and $C_v = 25.08 \text{ J mol}^{-1}\text{K}^{-1}$ for CO₂. Three moles of a ideal gas at 200 K and 2.0 atm pressure undergo reversible adiabatic compression until Q.16 the temperature becomes 250 K for the gas C_V is 27.5 JK⁻¹ mol⁻¹ in this temperature range. Calculate $G \le \Delta II$ ΔH and final V and final P. FREE Download Study Package from website: www.tekoclasses.com A sample of a fluorocarbon was allowed to expand reversibly and adiabatically to twice its volume. In the expansion the temperature dropped from 298.15 K to 248.44 K. Assume the gas behaves perfectly. Q.17 98930 Estimate the value of C_{Vm} . Q.18 Find the work done when one mole of the gas is expanded reversibly and isothermally from 5 atm to 1 atm at 25°C. TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, One mole of ideal monoatomic gas is carried through the reversible cyclic process as shown in figure. Q.19 Calculate. 3P° work done by the gas (a) (b) The heat exchanged by the gas in path CA and AB. Net heat absorbed by the gas in the path BC. (c) The max. temperature attained by the gas during the cycle. (d) Q.20 One mole of an ideal monoatomic gas is carried through the cycle of the 44.8 L given figure consisting of step A, B and C and involving state 1,2 and 3. Fill in the blank space in the table given below assuming reversible steps. 22.4 L Table-1 Р V Т State 1 2 3 Name of process ΔE ΔH Step q w A В С

Methan (Considered to be an ideal gas) initially at 25°C and 1 bar pressure is heated at constant pressure Q.26 until the volume has doubled. The variation of the molart heat capacity with ansolute temperature is given by $C_p = 22.34 + 48.1 \times 10^{-3} \text{ T}$ where C_p is in JK⁻¹ mol⁻¹. Calculate molar (a) ΔH (b) ΔU .

TEKO

Second law & Entropy change in thermodynamic processes

One mole of monoatomic gas was taken through a cylic process as shown in figure. Q.27

Calculate
$$\sum_{ABCA} \frac{dq_{rev}}{T}$$

- One mole of NaCl (s) on melting absorved 30.5 KJ of heat and its entropy is increased by 28.8 JK⁻¹. Q.28 What is the melting point of sodium chloride?
- Oxygen is heated from 300 to 600 at a constant pressure of 1 bar. What is the increases in molar BHOPAI Q.29 entropy? The molar heat capacity in JK⁻¹ mol⁻¹ for the O₂ is С

$$C_{\rm P} = 25.5 + 13.6 \times 10^{-3} \,\mathrm{T} - 42.5 \times 10^{-7} \,\mathrm{T}^2$$

- www.tekoclasses.com Q.30 A heat engine absorbs 760 kJ heat from a source at 380K. It rejects (1) 650 kJ, (ii) 560 kJ, (iii) 504 kJ of heat to sink at 280 K. State which of these represent a reversible, an irreversible and an impossible cycle.
- From the given T-S diagram of a reversible carnot engine, find Q.31
- (i) work delivered by engine in each cycle
- heat taken from the source in each cycle. (ii)
- ΔS_{sink} in each cycle. (iii)

Gibb's Function

- Q.32 Calculate the free energy change at 298 K for the reaction;
 - $Br_2(l) + Cl_2(g) \longrightarrow 2BrCl(g)$. For the reaction $\Delta H^\circ = 29.3 \text{ kJ}$ & the entropies of $Br_2(l)$, $Cl_2(g)$ & BrCl(g) at the 298 K are 152.3, 223.0, 239.7 J mol⁻¹ K⁻¹ respectively.
- Using the date given below, establish that the vaporization of $CCl_4(l)$ at 298 K to produce $CCl_4(g)$ at O.33 1 atm pressure does not occur spontaneously.

Given: $\operatorname{CCl}_4(l, 1 \operatorname{atm}) \longrightarrow \operatorname{CCl}_4(g, 1 \operatorname{atm})$; $\Delta S^\circ = 94.98 \ \mathrm{JK}^{-1} \operatorname{mol}^{-1}$; $\Delta H^\circ_f(\operatorname{CCl}_4, g) = -106.7 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \ \& \ \Delta H^\circ_f(\operatorname{CCl}_4, l) = -139.3 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$

FREE Download Study Package from website: Q.34 Animals operate under conditions of constant pressure and most of the processes that maintain life are electrical (in a broad sense). How much energy is available for sustaining this type of muscular and nervous activity from the combustion of 1 mol of glucose molecules under standard conditions at 37°C (blood temperature)? The entropy change is $+ 182.4 \text{ JK}^{-1}$ for the reaction as stated.

$$\Delta H_{\text{combustion [glucose]}} = -2808 \text{ K}.$$

Q.35 From the given table answer the following questions:

	CO(g)	CO ₂ (g)	$H_2O(g)$	H ₂ (g)
ΔH°_{298} (-KCal/mole)	-26.42	-94.05	-57.8	0
ΔG°_{298} (-KCal/mole)	-32.79	-94.24	-54.64	0
S° ₂₉₈ (-Cal/Kmole)	47.3	51.1	?	31.2

Reaction: $H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$

Calculate $\Delta_r H_{298}^{\circ}$ (ii) Calculate $\Delta_r G_{298}^{\circ}$ Calculate $\Delta_r E_{298}^{\circ}$ (v) Calculate S_{298}° [H₂O(g)] (i) (iii)

(iv)

200 100 T(K)300 600

Calculate $\Delta_{\rm r} S^{\circ}_{298}$

S(J/K)↑

PROFICIENCY TEST

		<u>PROFICIENCY TEST</u>	IRY
	Q.1	Mark the following statement as True or False.	OMET
	1.	Pressure is an intensive property.	CHI
	2.	Like U and H, S is also a state function.	STO
	3.	When a system undergoes a change at constant pressure, it is referred to an isothermal process.	of 29
	4.	A reversible process is always quasi-static.	lge 14
	5.	The workdone by a gas during free expansion is equal to zero.	$\mathbf{P}_{\mathbf{a}}$
	6.	First law of T.D. is applicable to all processes irrespective to whether they are reversible or irreversible.	
	7.	All spontaneous processes proceed in one direction only.	AL
L	8.	Whenever a system undergoes a cyclic change	HOF
con.		$\oint \frac{\mathrm{d}Q}{\mathrm{Tr}} \leq 0$, , ,
sses	0		888
ocla	9.	Positive value of ΔS_{system} during the process can be taken as sole criterion of spontaneity.	30 5
.tek	10.	A real crystal has higher entropy than the ideal crystal.	986
WWA	Q.2	Fill in the blank with appropriate items:	°.
>	1.	According to IUPAC conventions work done on the surroundings is	00 0
site	2.	A system is said to be if it can neither exchange matter nor energy with surrounding.	32 0(
web	3.	A carnot cycle uses only thermal reservoir.	55)- (
mo.	4.	A carnot cycle consists of only processes.	(07 <u></u>
ige fr	5.	The efficiency of a carnot engine can be increased by sink temperature when the source	r) PH:
ack	6	Equation $r_{\rm exactly}$ is a set of the se	K. Si
V P.	0. •7	For a reversible adiabatic process, $S = constnat and hence it is called as an process.$	2
Stud	1.	the system has changed its states.	YA (S
oad	8.	Solidification of liquid shows in entropy.	ARI
wnlo	9.	When Fe(s) is dissolved in a aqueous HCl in a closed rigid vessel the work done is	Я. Х
Do	10.	For Non-spontaneous process at constant T & P ΔG is	HAG
EE			SUF
FR			or ::

EXERCISE-II

		EXERCISE-II	IRY
	Q.1 (a) (b)	Calculate workdone in adiabatic compression of one mole of an ideal gas (monoatomic) from an initial ressure of 1 atm to final pressure of 2 atm. Initial temperature = 300 K. If process is carried out reversible if process is carried out irreversible against 2 atm external pressure. Compute the final volume reached by gas in two cases and describe the work graphically.	29 STOICHIOMET
1 website: www.tekoclasses.com	Q.2	1 mole of ice at 0°C and 4.6 mm Hg pressure is converted to water vapour at a constant temperature and pressure. Find Δ H and Δ E if the latent heat of fusion of ice is 80 cal/gm and latent heat of vaporisation of liquid water at 0°C is 596 cal per gram and the volume of ice in comparison of that water (vapour) is neglected.	Page 15 of
	Q.3 (a) (b) (c)	Two moles of an ideal gas ($\gamma = 5/3$) are initially at a temperature of 27°C and occupy a volume of 20 litre. The gas is first expanded at constant pressure until the volume is doubled. It then undergoes adiabatic change until the temperature returns to its initial value. Sketch the process on P – V diagram. What are final pressure and final volume of gas. What is the work done by the gas.	1, BHOPAL
	Q.4	20.0 dm ³ of an ideal gas (diatomic $C_{v, m} = 5R/2$) at 673 K and 0.7 MPa expands until pressure of the gas is 0.2 MPa. Calculate q, w, ΔU and ΔH for the process if the expansion is : (i) Isothermal and reversible (ii) Adiabatic and reversible (iii) Adiabatic and reversible (iv) Against 0.2 MPa and isothermal.	, 0 98930 5888 [.]
	Q.5 (a) (b) (c)	One mole of an ideal monoatomic gas ($C_{V,m}$ = 1.5 R) is subjected to the following sequence of steps: The gas is heated reversibly at constant pressure of 101.325 kPa from 298 K to 373 K. Next, the gas is expanded reversibly and isothermally to double its volume. Finally, the gas is cooled reversibly and adiabatically to 308K. Calculate q, w, ΔU and ΔH for the overall process.	755)- 32 00 000
kage froi	Q.6	Calculate ΔS_{f}° at 298 K of ; (i) NaCl(s), (ii) NH ₄ Cl(s) & (iii) diamond. The values of S° of Na, Cl ₂ , NaCl, NH ₄ Cl, N ₂ , H ₂ , diamond & graphite are 51, 223, 72, 95, 192, 131, 2.43 & 5.69 JK ⁻¹ mol ⁻¹ respectively.	Sir) PH: (0
FREE Download Study Pack	Q.7 (i) (ii) (iii)	One mole of an ideal gas is expanded isothermally at 298 K until its volume is tripled. Find the values of ΔS_{gas} and ΔS_{total} under the following conditions. Expansion is carried out reversibly. Expansion is carried out irreversibly where 836.8J of heat is less absorbed than in (i) Expansion is free.	ARIYA (S. R. K.
	Q.8 (i) (ii) (iii)	10 g of neon initially at a pressure of 506.625 kPa and temperature of 473 K expand adiabatically to a pressure of 202.65 kPa. Calculate entropy change of the system and total entropy change for the following ways of carrying out this expansion. Expansion is carried out reversibly. Expansion occurs against a constant external pressure of 202.65 kPa. Expansion is a free expansion.	ctor : SUHAG R. K
	Q.9 (a) (b) (c)	One mole of an ideal gas (not necessarily monoatomic) is subjected to the following sequence of steps. It is heated at constant volume from 298 K to 373 K It is expanded freely into a vacuum to double volume. It is cooled reversibly at constant pressure to 298 K. Calculate q, w, ΔU and ΔH for the overall process.	EKO CLASSES, Dire

Page 16 of 29 STOICHIOMETRY Q.10 Calculate the heat of vaporisation of water per gm at 25°C and 1 atm. Given $\Delta H_{f}^{o}[H_{2}O(l)] = -285.57 \text{ kJ/mol}, \Delta H_{f}^{o}[H_{2}O(g)] = -241.6 \text{ kJ/mol}.$ Comment why $\Delta H_{vap} (25^{\circ}C) > \Delta H_{vap} (100^{\circ}C)$. Use data of **Q.20** Q.11 Pressure over 1000 ml of a liquid is gradually increases from 1 bar to 1001 bar under adiabatic conditions. If the final volume of the liquid is 990 ml, calculate ΔU and ΔH of the process, assuming linear variation of volume with pressure. V Q.12 One mole monoatomic ideal gas was taken through process ABCD as shown in figure. Calculate 201(i) $W_{AB}, W_{BC}, W_{CD}, W_{DA}$ 15I(ii) 10I $q_{AB}, q_{BC}, q_{CD}, q_{DA}$ Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL (iii) $\Delta H_{AB}, \Delta H_{BC}, \Delta H_{CD}, \Delta H_{DA}$ 300 6Ò0 [Use : ln(3/2) = 0.40; ln(4/3) = 0.29] FREE Download Study Package from website: www.tekoclasses.com One mole of ideal monoatomic gas was taken through reversible isochoric heating from 100 K to Q.13 1000 K. Calculate ΔS_{system} , ΔS_{surr} , and ΔS_{total} in when the process carried out reversibly (i) (ii) when the process carried out irreversibly (one step) Calculate the entropy of a substance at 600 K using the following data. Q.14 (i) Heat capacity of solid from 0 K to normal melting point 200 K $JK^{-1}mol^{-1}$. $C_{Pm}(s) = 0.035 \text{ T}$ (ii) Enthalpy of fusion = 7.5 KJ mol⁻¹, (iii)Enthalpy of vaporisation = 30 KJ mol⁻¹ Heat capacity of liquid from 200 K to normal boiling point 300 K (iv) $C_{Pm}(l) = 60 + 0.016 \text{ T} \text{ JK}^{-1} \text{mol}^{-1}.$ Heat capacity of gas from 300 K to 600 K at 1 atm (\mathbf{v}) $C_{P_m}(g) = 50.0 \ JK^{-1}mol^{-1}$ Q.15(a) An ideal gas undergoes a single stage expansion against a constant opposing pressure from (P_1, V_1, T) to (P_2, V_2, T) . What is the largest mass m which can be lifted through a height h in this expansion? The system in (a) restored to its initial state by a single stage compression. What is the smallest mass m' (b) which must fall through the height h to restore the system? ¥. Ż (c) What is the net mass lowered through height h in the cyclic transformation in (a) and (b)? Ś Calculate the free energy change in the freezing of 18 gm of water at 263.15 K, given that the vapour Q.16 KARIYA pressure of water and ice at 263.15 K are 0.287 Pa and 0.260 Pa, respectively. A 32 g sample of CH_4 gas initially at 101.325 kPa and 300K is heated to 550 K. Q.17 $C_{P_m}/JK^{-1}mol^{-1} = 12.552 + 8.368 \times 10^{-2} T/K$. Assuming CH_4 behaves ideally, compute w, q. ΔU and ż ΔH for (a) an isobaric reversible process, and (b) an isochoric reversible process. **TEKO CLASSES, Director : SUHAG** Derive a mathematical expression for the work done on the surrounding when a gas that has the equation Q.18 of state PV = nRT – $\frac{n^2 a}{n}$ expands reversibly from V_i to V_f at constant temperature. Q.19 For the reaction $FeCO_3(s) = FeO(g) + CO_2(g)$ $\Delta_{\rm r} {\rm G}^{\circ} / {\rm J} \, {\rm mol}^{-1} = 78073.4 - 60.33 \, ({\rm T/K}) \log ({\rm T/K}) - 25.397 \, ({\rm T/K}) + 34.476 \times 10^{-3} \, ({\rm T/K})^2$ find $\Delta_r H^\circ$ and $\Delta_r S^\circ$ for the reaction at 25°C. Compute $\Delta_r G$ for the reaction H₂O (l, 1 atm, 323 K) \rightarrow H₂O (g, 1 atm, 323 K) Q.20 Δ_{vap} H at 373 K = 40.639 kJmol⁻¹, C_p(H₂O, *l*) = 75.312 J K⁻¹mol⁻¹, Given that : $C_{p}(H_{2}O, g) = 33.305 \text{ J } \text{K}^{-1}\text{mol}^{-1}.$

		EXERCISE-III					
	Q.1	Out of boiling point (I) (A) I, II	, entropy (II), pH (III) a (B) I,II, III	nd e.m.f. of a cell (IV) Ir (C) I, III, IV	ntensive properties are: (D) All of these	HIOMET	
	Q.2	Which has maximum in (A) helium gas	nternal energy at 298 K? (B) oxygen gas	(C) ozone gas	(D) equal	29 STOIC	
	Q.3 Ethyl chloride (C ₂ H ₅ Cl), is prepared by reaction of ethylene with hydrogen chloride: C ₂ H ₄ (g) + HCl (g) \longrightarrow C ₂ H ₅ Cl (g) Δ H = -72.3 kJ What is the value of Δ E (in kJ), if 98 g of ethylene and 109.5 g of HCl are allowed to react at 30						
		(A) – 64.81	(B) –190.71	(C) –209.41	(D) – 224.38		
om	Q.4	Two moles of Helium g figure. Assuming gas to process?	as undergo a reversible of be ideal, what is the net	cyclic process as shown i work involved in the cycl	n 2 atm B C 1 atm A D	BHOPAL	
es.c		(A) $-100 \text{ R}ln4$		(B) $+100Rln4$ (D) $-200Rln4$	300 K 400 K	18	
lass		(C) + 200 R i I I 4		(D) = 200 K/II4		588	
w.tekoc	Q.5	Benzene burns accordi $2C_6H_6(l) + 12$ What is the ΔE° for the	ng to the following equation $5 O_2(g) \longrightarrow 12 CO_2(g)$ e combustion of 1.5 mol	tion g) + 6H ₂ O(l) ΔH° = of benzene	-6542 kJ	0 98930	
ММ		(A) –3271 kJ	(B) –9813 kJ	(C) – 4906.5 kJ	(D) None of these	00,	
te:	0.6	One mole of ideal gas i	s allowed to expand rev	ersibly and adiabatically	from a temperature of 27°C. If	000	
ebsi		the work done by the g	gas in the process is 3 kJ,	the final temperature w	ill be equal to $(C_V = 20 \text{ J/K mol})$	- 32	
n We		(A) 100 K	(B) 450 K	(C) 150 K	(D) 400 K	755)	
fror			5			е Ŧ	
age	Q.7	Two moles of an ideal g	gas ($C_v = \frac{1}{2}R$) was com	pressed adiabatically aga	ainst constant pressure of 2 atm.	ir) Pl	
ack		Which was initially at 3	350 K and 1 atm pressur	e. The work involve in t	he process is equal to	K. S	
ly P		(A) 250 R	(B) 300 K	(C) 400 K	(D) 500 K	2	
Stud	Q.8	The maximum efficien	cy of a heat engine operation	ating between 100°C and	d 25°C is	A (S	
ad		(A) 20%	(B) 22.2%	(C) 25%	(D) none	ARIY	
vnlo	Q.9	A heat engine operation	ng between 227°C and 2	27°C absorbs 2 Kcal of	heat from the 227°C reservoir	R X	
EE Dov		reversibly per cycle. Th (A) 0.4 Kcal	he amount of work done (B) 0.8 Kcal	e in one cycle is (C) 4 Kcal	(D) 8 Kcal	SUHAG	
FR	Q.10	A reversible heat engir heat to a reservoir at T the engine A, from the If the efficiencies of cr	the A (based on carnot cy $_2$. A second reversible erreservoir at T ₂ and rejections $_2$ and P are the second reversible of the second parameters of the second param	cle) absorbs heat from a ngine B absorbs, the sam cts energy to a reservoir me then the temperature	reservoir at 1000K and rejects e amount of heat as rejected by at 360K.	Director :	
		(A) 680 K	(B) 640 K	(C) 600 K	(D) none	SSES,	

TEKO CLAS

Q.11 For the reaction at 300 K $A(g) + B(g) \longrightarrow C(g)$ $\Delta E = -3.0 \text{ kcal}$; $\Delta S = -10.0 \text{ cal/K}$						IOMETRY
		(A) -600 cal	(B)-6600 cal	(C) –6000 cal	(D) None	TOICH
	Q.12	The entropy change whisochorically	hen two moles of ideal m	onoatomic gas is heat fro	om 200 to 300°C reversibly and	e 18 of 29 S
		(A) $\frac{3}{2}$ R ln $\left(\frac{300}{200}\right)$	$(B) \frac{5}{2} R \ln\left(\frac{573}{273}\right)$	$(C) 3R \ln\left(\frac{573}{473}\right)$	$(D) \frac{3}{2} R \ln \left(\frac{573}{473}\right)$	Pag
	Q.13	What is the free energy into steam at 100° C ar (A) 80 cal	the change (ΔG) when 1.0 and 1 atm pressure? (B) 540 cal	mole of water at 100° C	and 1 atm pressure is converted	PAL
.com	Q.14	What is the free energy	(b) 540 call (change (ΔG) when 1.0	mole of water at 100°C	and 1 atm pressure is converted	1, ВНО
lasses		(A) zero cal	(B) 540 cal	(C) 515.4 cal	(D) none	5888
ww.tekoc	Q.15	When two equal sized piece) are brought into in entropy of system is	pieces of the same met contact into thermal con given by	al at different temperati atact and isolated from it	ures T_h (hot piece) and T_c (cold s surrounding. The total change	, 0 9893(
ebsite: w	\langle	(A) $C_v \ln \frac{T_c + T_h}{2T_c}$	$(B) C_v ln \frac{T_2}{T_1}$	(C) $C_v ln \frac{(T_c + T_h)^2}{2T_h . T_c}$	(D) $C_v ln \frac{(T_c + T_h)^2}{4T_h T_c}$)- 32 00 000
om w	Q.16	Pick out the correct sta	tement among the follow	ving.		(0755
ge fir		(A) $\Delta S_f^o \{ He(g) \} > 0$	at 298 K	(B) $\Delta S_{f}^{o} \{ H_{2}O(g) \} > 0$	0 at 298 K	ΗH
ackag		(C) S° of H_2 gas > 0 a	nt 298 K	(D) $\Delta G_{f}^{o} \{ H_{2}(g) \} > 0$) at 298 K	(. Sir)
d Study Pa	Q.17	What can be conclude (A) $\Delta H > 0$, $\Delta S > 0$ (C) $\Delta H < 0$, $\Delta S > 0$	d about the values of ΔH	H and ΔS from this grap (B) $\Delta H > 0$, $\Delta S < 0$ (D) $\Delta H < 0$, $\Delta S < 0$	h?	RIYA (S. R. Þ
Downloa	Q.18	Which of the following Statement (a) : Rever minin	statement(s) is/are incor rsible isothermal compre num value of the workdo	rect: ession of an ideal gas rep one (lwl) by the surround	Too 200 300 400 500 Temperature, K	HAG R. KAI
REE		Statement (b) : In an	irreversible process, the	cyclic integral of work i	s not zero.	SUI
H		Statement (c) : For the Statement (d) : ΔS_{sys} (A) Statement c	hermodynamic changes _{tem} is zero for reversible (B) Statement a, b, c	in adiabatic process T adiabatic expansion of (C) Statement a, b, d	$\left. \begin{array}{c} \frac{r_{p,m}}{R} \end{array} \right)$.P = constant an ideal gas. (D) All	SSES, Director

TEKO CLAS

	Q.19	9.0 gm ice at 0°C is m Using the following da C_{p} (H ₂ O) = 4.18 Jg ⁻	ixed with 36 gm tta, answer the qu ¹ K ⁻¹ ; ΔH _{fusion} (of water at 50°C in sestion that follow ice) = 335 J g ⁻¹	a thermally ins	ulated container.	HOMETRY	
	(i)	final temperature of wa (A) 304.43 K	ater is (B) 296.97 K	(C) 303.9	93 K ((D) 287 K	29 STOICI	
	(ii)	ΔS _{ice} is (A) 11.04 JK ⁻¹	(B) 3.16 JK ⁻¹	(C) 14.2	JK ⁻¹ ((D) 7.84 JK ⁻¹	Page 19 of	
	(iii)	ΔS_{water} is (A) -12.64 JK ⁻¹	(B) -0.34 JK-	(C) -5.42	2 JK ⁻¹ ((D) 12.64 JK ⁻¹	F	
tom	(iv)	What is the total entro (A) -1.56 JK ⁻¹	py change in the (B) −1.60 JK ⁻	process? ¹ (C) 1.56	JK ⁻¹ ((D) 1.60 JK ⁻¹	, внора	
from website: www.tekoclasses.c	Q.20 (i) (ii)	Liquid water freezes at 273 K under external pressure of 1 atm. The process is at equilibrium $H_2O(l) \perp H_2O(s)$ at 273 K & 1 atm. However it was required to calculate the thermodynamic parameters of the fusion process occuring at same pressure & different temperature. Using the following data, answer the question that follow. $d_{ice} = 0.9 \text{ gm/cc}$; $d_{H_2O(l)} = 1 \text{ gm/cc}$; $C_P [H_2O(s)] = 36.4 \text{ JK}^{-1}\text{mol}^{-1}$; $C_P [H_2O(l)] = 75.3 \text{ JK}^{-1}\text{mol}^{-1}$; $\Delta H_{fusion} = 6008.2 \text{ Jmol}^{-1}$. The value of " ΔH_{fusion} " at 263 K & 1 atm will be (A) +6008.2 J mole ⁻¹ (B) 5619.2 J mole ⁻¹ (C) -5619.2 J mole ⁻¹ (D) 6619.2 J mole ⁻¹						
(iii) At 1 atm & at differnt temperature given below. Match the conditions & the temp							the S	
P		Condition		Temperature			5. 	
pn		(1) Spontaneous	(a)	273 K			s.	
S		(2) At equilibrium	(b)	260 K			ĮΧ	
oad		(3) Not feasible	(c)	280 K			(AR	
vnl		(A) (1-c), (2-a), (3-b)))	(B)(1-b)), (2–a), (3–c)		Υ. Σ	
Dov		(C) (1-c), (2-b), (3-a)	ı)	(D)(1-a)), (2–b), (3–c)		AG I	
E	(iv)	For the fusion process	at 263 K match	the conditions wit	h the pressure		H	
RF	(1V)	Conditions	at 205 K, match	Pressure	in the pressure		s U	
Ţ		(1) Spontaneous	(a)	1 atm			cto	
		(2) At equilibrium	(b)	1054 atm			ire	
		(3) Not feasible	(c)	2000 atm			ي م	
		(A) (1–b), (2–c), (3–a	ı)	(B)(1-a)), (2–b), (3–c)		SEC	
		(C) $(1-c), (2-b), (3-a)$ (D) $(1-a), (2-c), (3-b)$						

EXERCISE-IV

SUBJECTIVE

	Q.9 Q.10	For the reaction, $2CO(g) + O_2(g) \longrightarrow 2CO_2(g); \Delta H = -560 \text{ kJ mol}^{-1}$ In one litre vessel at 500 K the initial pressure is 70 atm and after the reaction it becomes the constant volume of one litre. Calculate change is internal energy. All the above gases should be available to the energy of the energy	mes 40 atm at ow significant [JEE 2006] reases steeply and Δ H [JEE 2004]	Page 21 of 29 STOICHIOME
FREE Download Study Package from website: www.tekoclasses.com	Q.11 (a) (b) (c) (i) (ii) (iii) Q.12 Q.13	Two moles of a perfect gas undergoes the following processes : a reversible isobaric expansion from (1.0 atm, 20.0 L) to (1.0 atm, 40.0 L); a reversible isochoric change of state from (1.0 atm, 40.0 L) to (1.0 atm, 20.0 L); Stetch with labels each of the processes on the same P-V diagram. Calculate the total work (w) and the total heat change (q) involved in the above processes What will be the values of ΔU , ΔH and ΔS for the overall process ? Show that the reaction $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$ at 300 K is spontaneous and exol the standard entropy is -0.094 kJ mol ⁻¹ K ⁻¹ . The standard Gibbs free energies of form and CO are -394.4 and -137.2 kJ mol ⁻¹ , respectively. A sample of argon gas at 1 atm pressure and 27°C expands reversibly and adiabatically f to 2.50 dm ³ . Calculate the enthalpy change in this process. C_{vm} for argon is 12.48 JK ⁺¹ r	[JEE 2002] es. thermic, when ation for CO ₂ [JEE 2001] from 1.25 dm ³ nol ⁻¹ . [JEE 2000]	TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881 , BHOPAL

CTRY

ANSWER KEY <u>Exercise-i</u>

Kirchoff's Rule : Variation of Enthalpy with Temperature

Q.25 ΔH_{373}^{0} (H₂O (*l*)) = -284.11 kJ

Q.26 (a) $13.064 \text{ kJ mol}^{-1}$, (b) $10.587 \text{ kJ mol}^{-1}$

Second law & Entropy change in thermodynamic processes

 Q.28
 T = 1059 K Q.29
 $21.18 \text{ JK}^{-1} \text{ mol}^{-1}$ Q.30
 (i) irreversible, (ii) reversible, (iii) impossible

 Q.31
 (i) 30 kJ, (ii) + 60 kJ, (iii) 100 J/K Q.30
 (i) irreversible, (iii) reversible, (iii) impossible

Gibb's Function Page 23 of 29 STOICHIOMETRY Q.33 $\Delta G^{\circ} = 4.3 \text{ kJ mol}^{-1} > 0$ Q.32 - 1721.8 J Q.34 – 2864.5 KJ (i) - 9.83 Kcal/mole; (ii) - 6.81 Kcal/mole, (iii) - 10.13 Cal/Kmole, (iv) - 9.83 Kcal/mole, Q.35 (v) + 45.13 Cal/ K mole PROFICIENCY TEST Q.1 Т Т F 1. 2. 3. 4. Т 5. Т Т 7. Т 8. Т 9. F 10. Т 6. Q.2 negative 2. isolated 3. reversible 1. two 4. 7. 5. isentropic decresing 6. Initial, final 8. decrease 9. zero 10. positive FREE Download Study Package from website: www.tekoclasses.com EXERCISE II W_{rev} W_{irrev} P Q.1 (a) $T_2 = 395.8$; $V_2 = 16.24$ L; $W_{rev} = 1194.72$ J, (b) $V_2^1 = 17.24 \text{ L}$; $T_2^1 = 420 \text{ K}$, $W_{irrev} = 1496.52 \text{ J}$ $\Delta H = 12168$ calories; $\Delta E = 11623$ calories Q.2 P₁,300 K (b) $P_2 = 0.435$ atm $V_1 = 113.13$ litre, (c) $W_2 = -3000$ cal Q.3 (a) (i) q = -w = 17.54 kJ, $\Delta U = 0$ and $\Delta H = 0$; (ii) q = 0, $w = \Delta U = -10.536 \text{ kJ}$ and $\Delta H = -14.75 \text{ kJ}$ Q.4 (iii) q = 0, w = 0, $\Delta U = 0$ and $\Delta H = 0$ (iv) q = 0; $\Delta U = w = -7.14$ KJ; $\Delta H = -9.996$ KJ, (v) $q = -w = 10.0 \text{ KJ}, \Delta U = \Delta H = 0$ Q.5 (a) $q = \Delta H = 1558.88$, $\Delta U = 935.33$; $w = -P(\Delta U) = -623.55 \text{ J mol}^{-1}$ (b) w = -2149.7; $\Delta U \& \Delta H = 0$, q = -w(c) q = 0, w = -810.62, $\Delta H = -1351.03$ Jmol⁻¹ for overall process q = 3708.59; w = -3583.88, $\Delta U = 124.71$; $\Delta H = 207.85$ Q.6 (i) -90.5 (ii) -374.5 (iii) -3.26 (all in J mol⁻¹ K⁻¹) (i) $\Delta S_{gas} = -\Delta S_{surr}$ and $\Delta S_{total} = 0$, (ii) $\Delta S_{total} = 2.808 \text{ J K}^{-1}$ (iii) $\Delta S_{total} = \Delta S_{svs} = 9.134 \text{ J K}^{-1}$ Q.7 (i) $\Delta S_{sys} = 0$; $\Delta S_{surr} = 0$ and $\Delta S_{total} = 0$, (ii) $\Delta S_{surr} = 0$; $\Delta S_{total} = \Delta S_{sys} = 0.957 \text{ JK}^{-1}$ (iii) $\Delta S_{sys} = \Delta S_{total} = 3.81 \text{ JK}^{-1}$ Q.8 Q.9 $\Delta U \& \Delta H = 0$; w = 623.55; q = -623.55 J mol⁻¹ Q.10 $\Delta H_{vap}(25^{\circ}C) = 43.97 \text{ kJ/mol} = 2.433 \text{ kJ/gm}, \Delta H_{vap}(100^{\circ}C) = 40.62 \text{ kJ/mol}(given)$ $\Delta U = 501 \text{ J}; \Delta H = 99.5 \text{ kJ}$ Q.11 Q.12 (i) $w_{AB} = -1496.52 \text{ J}, w_{BC} = -1446.63 \text{ Joule}, w_{CD} = 0, w_{DA} = 1728.84 \text{ Joule};$ (ii) $q_{AB} = 5237.82$ Joule, $q_{BC} = 1446.63$ Joule, $q_{CD} = -3741.3$ Joule, $q_{DA} = 1728.84$ Joule; (iii) $\Delta H_{AB} = 6235.5$ Joule, $\Delta H_{BC} = 0$, $\Delta H_{CD} = -6235.5$ Joule, $\Delta H_{DA} = 0$ Joule

